Planar data classification with one hidden layer

Welcome to your week 3 programming assignment. It's time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression.

You will learn how to:

- Implement a 2-class classification neural network with a single hidden layer
- Use units with a non-linear activation function, such as tanh
- Compute the cross entropy loss
- Implement forward and backward propagation

1 - Packages

Let's first import all the packages that you will need during this assignment.

- numpy (www.numpy.org) is the fundamental package for scientific computing with Python.
- sklearn (http://scikit-learn.org/stable/) provides simple and efficient tools for data mining and data analysis.
- matplotlib (http://matplotlib.org) is a library for plotting graphs in Python.
- testCases provides some test examples to assess the correctness of your functions
- planar_utils provide various useful functions used in this assignment

```
In [2]: # Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases_v2 import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_...

%matplotlib inline
np.random.seed(1) # set a seed so that the results are consistent
```

2 - Dataset

First, let's get the dataset you will work on. The following code will load a "flower" 2-class dataset into variables X and Y.

```
In [3]: X, Y = load_planar_dataset()
```

Visualize the dataset using matplotlib. The data looks like a "flower" with some red (label y=0) and
some blue (y=1) points. Your goal is to build a model to fit this data.

You have:

- a numpy-array (matrix) X that contains your features (x1, x2)
- a numpy-array (vector) Y that contains your labels (red:0, blue:1).

Let's first get a better sense of what our data is like.

Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?

Hint: How do you get the shape of a numpy array? [help](https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html)

```python
### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # training set size
### END CODE HERE ###

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
```

The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!
Expected Output:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>shape of</td>
<td>(2, 400)</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>shape of</td>
<td>(1, 400)</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>400</td>
</tr>
</tbody>
</table>

3 - Simple Logistic Regression

Before building a full neural network, let's first see how logistic regression performs on this problem. You can use sklearn's built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.

In [6]:

```python
# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
```

You can now plot the decision boundary of these models. Run the code below.
Expected Output:

Accuracy 47%

Interpretation: The dataset is not linearly separable, so logistic regression doesn't perform well. Hopefully a neural network will do better. Let's try this now!

4 - Neural Network model

Logistic regression did not work well on the "flower dataset". You are going to train a Neural Network with a single hidden layer.

Here is our model:
Mathematically:

For one example $x^{(i)}$:

$$z^{[1]}(i) = W^{[1]} x^{(i)} + b^{[1]}(i)$$

$$a^{[1]}(i) = \tanh(z^{[1]}(i))$$

$$z^{[2]}(i) = W^{[2]} a^{[1]}(i) + b^{[2]}(i)$$

$$\hat{y}^{(i)} = a^{[2]}(i) = \sigma(z^{[2]}(i))$$

$$y^{(i)}_{prediction} = \begin{cases} 1 & \text{if } a^{[2]}(i) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Given the predictions on all the examples, you can also compute the cost J as follows:

$$J = - \frac{1}{m} \sum_{i=0}^{m} \left(y^{(i)} \log(a^{[2]}(i)) + (1 - y^{(i)}) \log(1 - a^{[2]}(i)) \right)$$

Reminder: The general methodology to build a Neural Network is to:

1. Define the neural network structure (# of input units, # of hidden units, etc).
2. Initialize the model's parameters
3. Loop:
 - Implement forward propagation
 - Compute loss
 - Implement backward propagation to get the gradients
 - Update parameters (gradient descent)

You often build helper functions to compute steps 1-3 and then merge them into one function we call `nn_model()`. Once you've built `nn_model()` and learnt the right parameters, you can make predictions on new data.

4.1 - Defining the neural network structure

Exercise: Define three variables:

- n_x: the size of the input layer
- n_h: the size of the hidden layer (set this to 4)
- n_y: the size of the output layer
Hint: Use shapes of \(X\) and \(Y\) to find \(n_x\) and \(n_y\). Also, hard code the hidden layer size to be 4.

```python
# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
    
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)

    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0] # size of input layer
    n_h = 4
    n_y = Y.shape[0] # size of output layer
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

X_assess, Y_assess = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
print("The size of the input layer is: n_x = " + str(n_x))
print("The size of the hidden layer is: n_h = " + str(n_h))
print("The size of the output layer is: n_y = " + str(n_y))
```

The size of the input layer is: \(n_x = 5\)
The size of the hidden layer is: \(n_h = 4\)
The size of the output layer is: \(n_y = 2\)

Expected Output (these are not the sizes you will use for your network, they are just used to assess the function you’ve just coded).

<table>
<thead>
<tr>
<th>(n_x)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_h)</td>
<td>4</td>
</tr>
<tr>
<td>(n_y)</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2 - Initialize the model's parameters

Exercise: Implement the function `initialize_parameters()`.

Instructions:

- Make sure your parameters' sizes are right. Refer to the neural network figure above if needed.
- You will initialize the weights matrices with random values.
 - Use \(\text{np.random.randn}(a,b) \times 0.01\) to randomly initialize a matrix of shape \((a,b)\).
- You will initialize the bias vectors as zeros.
Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.

```python
In [10]: # GRADED FUNCTION: initialize_parameters
def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer

    Returns:
    params -- python dictionary containing your parameters:
    W1 -- weight matrix of shape (n_h, n_x)
    b1 -- bias vector of shape (n_h, 1)
    W2 -- weight matrix of shape (n_y, n_h)
    b2 -- bias vector of shape (n_y, 1)
    """

    np.random.seed(2) # we set up a seed so that your output matches ours although
                     # it is not strictly necessary.

    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
    ### END CODE HERE ###

    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {
        "W1": W1,
        "b1": b1,
        "W2": W2,
        "b2": b2
    }

    return parameters
```
4.3 - The Loop

Question: Implement forward_propagation().

Instructions:

- Look above at the mathematical representation of your classifier.
- You can use the function `sigmoid()`. It is built-in (imported) in the notebook.
- You can use the function `np.tanh()`. It is part of the numpy library.
- The steps you have to implement are:
 1. Retrieve each parameter from the dictionary "parameters" (which is the output of `initialize_parameters()`) by using `parameters[".."]`.
- Values needed in the backpropagation are stored in "cache". The cache will be given as an input to the backpropagation function.
In [12]: def forward_propagation(X, parameters):

 Argument:
 X -- input data of size (n_x, m)
 parameters -- python dictionary containing your parameters (output of initial
 Returns:
 A2 -- The sigmoid output of the second activation
 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"

 # Retrieve each parameter from the dictionary "parameters"
 ### START CODE HERE ### (≈ 4 lines of code)
 W1 = parameters['W1']
 b1 = parameters['b1']
 W2 = parameters['W2']
 b2 = parameters['b2']
 ### END CODE HERE ###

 # Implement Forward Propagation to calculate A2 (probabilities)
 ### START CODE HERE ### (≈ 4 lines of code)
 Z1 = np.dot(W1, X) + b1
 A1 = np.tanh(Z1)
 Z2 = np.dot(W2, A1) + b2
 A2 = sigmoid(Z2)
 ### END CODE HERE ###

 assert(A2.shape == (1, X.shape[1]))

 cache = {'Z1': Z1,
 'A1': A1,
 'Z2': Z2,
 'A2': A2}

 return A2, cache

In [13]: X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)

Note: we use the mean here just to make sure that your output matches ours.
print(np.mean(cache['Z1'])), np.mean(cache['A1']), np.mean(cache['Z2']), np.mean(cache)
0.262818640198 0.091999045227 -1.30766601287 0.212877681719

Expected Output:

0.262818640198 0.091999045227 -1.30766601287 0.212877681719

Now that you have computed $A^\{[2]\}$ (in the Python variable "A2"), which contains $a^\{[2](i)\}$ for every example, you can compute the cost function as follows:

$$J = - \sum_{i=0}^{m} \left(y^\{(i)\} \log(a^\{[2](i)\}) + (1-y^\{(i)\}) \log(1-a^\{[2](i)\}) \right)$$

https://hub.coursera-notebooks.org/user/ceugcspkoihylurudmnotebooks/Week%203/Planar%20data%20classification%20with%20one%20hidde...
Exercise: Implement `compute_cost()` to compute the value of the cost J.

Instructions:

- There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented $- \sum_{i=0}^{m} y^{(i)} \log(a^{[2](i)})$:

  ```python
  logprobs = np.multiply(np.log(A2), Y)
  cost = - np.sum(logprobs)  # no need to use a for loop!
  ```

(you can use either `np.multiply()` and then `np.sum()` or directly `np.dot()`).

In [14]: # GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
 ""
 Computes the cross-entropy cost given in equation (13)
 """
 m = Y.shape[1] # number of example

 # Retrieve W1 and W2 from parameters
 ### START CODE HERE ### (~ 2 lines of code)
 W1 = parameters['W1']
 W2 = parameters['W2']
 ### END CODE HERE ###

 # Compute the cross-entropy cost
 ### START CODE HERE ### (~ 2 lines of code)
 logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
 cost = - np.sum(logprobs) / m
 ### END CODE HERE ###

 cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
 assert(isinstance(cost, float))
 return cost

In [15]: A2, Y_assess, parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2, Y_assess, parameters)))

cost = 0.693058761039
Expected Output:

| cost | 0.693058761... |

Using the cache computed during forward propagation, you can now implement backward propagation.

Question: Implement the function `backward_propagation()`.

Instructions: Backpropagation is usually the hardest (most mathematical) part in deep learning. To help you, here again is the slide from the lecture on backpropagation. You'll want to use the six equations on the right of this slide, since you are building a vectorized implementation.

Summary of gradient descent

\[
\begin{align*}
 dz^{[2]} &= a^{[2]} - y \\
 dW^{[2]} &= dz^{[2]}a^{[1]T} \\
 db^{[2]} &= dz^{[2]} \\
 dZ^{[1]} &= W^{[2]T}dz^{[2]} \ast g^{[1]'}(Z^{[1]}) \\
 dW^{[1]} &= dz^{[1]}x^T \\
 db^{[1]} &= dz^{[1]}
\end{align*}
\]

\[
\begin{align*}
 dZ^{[2]} &= A^{[2]} - Y \\
 dW^{[2]} &= \frac{1}{m} dZ^{[2]}A^{[1]T} \\
 db^{[2]} &= \frac{1}{m} \text{np.sum}(dZ^{[2]}, \text{axis} = 1, \text{keepdims} = \text{True}) \\
 dZ^{[1]} &= W^{[2]T}dZ^{[2]} \ast g^{[1]'}(Z^{[1]}) \\
 dW^{[1]} &= \frac{1}{m} dZ^{[1]}x^T \\
 db^{[1]} &= \frac{1}{m} \text{np.sum}(dZ^{[1]}, \text{axis} = 1, \text{keepdims} = \text{True})
\end{align*}
\]

Tips:
- To compute $dZ1$ you'll need to compute $g^{[1]'}(Z^[1])$. Since $g^{[1]}(.)$ is the tanh activation function, if $a = g^{[1]}(z)$ then $g^{[1]'}(z) = 1-a^2$. So you can compute $g^{[1]'}(Z^[1])$ using $(1 - \text{np.power}(A1, 2))$.
In [16]: # GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):

 Implement the backward propagation using the instructions above.

 Arguments:
 parameters -- python dictionary containing our parameters
 cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
 X -- input data of shape (2, number of examples)
 Y -- "true" labels vector of shape (1, number of examples)

 Returns:
 grads -- python dictionary containing your gradients with respect to different

 m = X.shape[1]

 # First, retrieve W1 and W2 from the dictionary "parameters".
 ### START CODE HERE ### (≈ 2 lines of code)
 W1 = parameters['W1']
 W2 = parameters['W2']
 ### END CODE HERE ###

 # Retrieve also A1 and A2 from dictionary "cache".
 ### START CODE HERE ### (≈ 2 lines of code)
 A1 = cache['A1']
 A2 = cache['A2']
 ### END CODE HERE ###

 # Backward propagation: calculate dw1, db1, dw2, db2.
 ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on s
 dZ2 = A2 - Y
 dW2 = (1 / m) * np.dot(dZ2, A1.T)
 db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
 dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
 dW1 = (1 / m) * np.dot(dZ1, X.T)
 db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
 ### END CODE HERE ###

 grads = {
 "dW1": dW1,
 "db1": db1,
 "dW2": dW2,
 "db2": db2
 }

 return grads
In [17]:
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

g = backward_propagation(parameters, cache, X_assess, Y_assess)
print("dW1 = \" + str(g[dW1]) + ")
print("db1 = \" + str(g[db1]) + ")
print("dW2 = \" + str(g[dW2]) + ")
print("db2 = \" + str(g[db2]) + ")

dW1 = [[0.00301023 -0.00747267
 [0.00257968 -0.00641288
 [-0.00156892 0.003893]
 [-0.00652037 0.01618243]]
db1 = [[0.00176201]
 [-0.00381422]]
dW2 = [[0.00078841 0.01765429 -0.00084166 -0.01022527]]
db2 = [[-0.16655712]]

Expected output:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dW1</td>
<td>[[0.00301023 -0.00747267] [0.00257968 -0.00641288] [-0.00156892 0.003893] [-0.00652037 0.01618243]]</td>
</tr>
<tr>
<td>db1</td>
<td>[[0.00176201] [-0.00381422]]</td>
</tr>
<tr>
<td>dW2</td>
<td>[[0.00078841 0.01765429 -0.00084166 -0.01022527]]</td>
</tr>
<tr>
<td>db2</td>
<td>[-0.16655712]</td>
</tr>
</tbody>
</table>

Question: Implement the update rule. Use gradient descent. You have to use (dW1, db1, dW2, db2) in order to update (W1, b1, W2, b2).

General gradient descent rule: $\theta = \theta - \alpha \frac{\partial J}{\partial \theta}$ where α is the learning rate and θ represents a parameter.

Illustration: The gradient descent algorithm with a good learning rate (converging) and a bad learning rate (diverging). Images courtesy of Adam Harley.
Planar data classification with one hidden layer v4

\[f(x) = x^2 \sin(x) \]

Start (2.5, 3.7)

End (4.9, -23.7)

Descending with step coefficient 0.005 (iteration 50)

Start (2.5, 3.7)

End (5.4, -22.1)

Descending with step coefficient 0.05 (iteration 50)
In [18]: # GRADED FUNCTION: update_parameters

```python
def update_parameters(parameters, grads, learning_rate=1.2):
    ""
    Updates parameters using the gradient descent update rule given above
    Arguments:
    parameters -- python dictionary containing your parameters
    grads -- python dictionary containing your gradients
    Returns:
    parameters -- python dictionary containing your updated parameters
    ""
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
    ### END CODE HERE ###

    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
    ### END CODE HERE ###

    # Update rule for each parameter
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
    ### END CODE HERE ###

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    return parameters
```

In [19]:
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

W1 = [[-0.00643025 0.01936718]
 [-0.02410458 0.03978052]
 [-0.01653973 -0.02096177]
 [0.01046864 -0.05990141]]
b1 = [[-1.02420756e-06]
 [1.27373948e-05]
 [8.32996807e-07]
 [-3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]]
b2 = [[0.00010457]]

Expected Output:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>[[-0.00643025 0.01936718] [-0.02410458 0.03978052] [-0.01653973 -0.02096177] [0.01046864 -0.05990141]]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>[[-1.02420756e-06] [1.27373948e-05] [8.32996807e-07] [-3.20136836e-06]]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>[[-0.01041081 -0.04463285 0.01758031 0.04747113]]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td>[[0.00010457]]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model()

Question: Build your neural network model in nn_model().

Instructions: The neural network model has to use the previous functions in the right order.
GRADED FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):

 Arguments:
 X -- dataset of shape (2, number of examples)
 Y -- labels of shape (1, number of examples)
 n_h -- size of the hidden layer
 num_iterations -- Number of iterations in gradient descent loop
 print_cost -- if True, print the cost every 1000 iterations

 Returns:
 parameters -- parameters learnt by the model. They can then be used to predict

 np.random.seed(3)
 n_x = layer_sizes(X, Y)[0]
 n_y = layer_sizes(X, Y)[2]

 # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y
 ### START CODE HERE ### (≈ 5 lines of code)
 parameters = initialize_parameters(n_x, n_h, n_y)
 W1 = parameters['W1']
 b1 = parameters['b1']
 W2 = parameters['W2']
 b2 = parameters['b2']
 ### END CODE HERE ###

 # Loop (gradient descent)
 for i in range(0, num_iterations):

 ### START CODE HERE ### (≈ 4 lines of code)
 # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
 A2, cache = forward_propagation(X, parameters)
 # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
 cost = compute_cost(A2, Y, parameters)
 # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
 grads = backward_propagation(parameters, cache, X, Y)
 # Gradient descent parameter update. Inputs: "parameters, grads". Outputs
 parameters = update_parameters(parameters, grads)
 ### END CODE HERE ###

 # Print the cost every 1000 iterations
 if print_cost and i % 1000 == 0:
 print ("Cost after iteration %i: %f" % (i, cost))

 return parameters
4.5 Predictions

Question: Use your model to predict by building `predict()`. Use forward propagation to predict results.

Reminder:

Predictions = $y_{\text{prediction}} = \begin{cases} 1 & \text{if activation > 0.5} \\ 0 & \text{otherwise} \end{cases}$

As an example, if you would like to set the entries of a matrix X to 0 and 1 based on a threshold you would do: $X_{\text{new}} = (X > \text{threshold})$
In [22]: # GRADED FUNCTION: predict
def predict(parameters, X):

 Using the learned parameters, predicts a class for each example in X

 Arguments:
 parameters -- python dictionary containing your parameters
 X -- input data of size (n_x, m)

 Returns
 predictions -- vector of predictions of our model (red: 0 / blue: 1)

 # Computes probabilities using forward propagation, and classifies to 0/1 using
 # START CODE HERE ### (≈ 2 lines of code)
 A2, cache = forward_propagation(X, parameters)
predictions = np.round(A2)
 # END CODE HERE ###

 return predictions

In [23]: parameters, X_assess = predict_test_case()
predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))
predictions mean = 0.666666666667

Expected Output:

| predictions mean | 0.666666666667 |

It is time to run the model and see how it performs on a planar dataset. Run the following code to test your model with a single hidden layer of n_h hidden units.
In [24]:
 # Build a model with a n_h-dimensional hidden layer
 parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

 # Plot the decision boundary
 plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
 plt.title("Decision Boundary for hidden layer size " + str(4))

Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219454
Cost after iteration 9000: 0.218607

Out[24]: <matplotlib.text.Text at 0x7f8a25f4f780>

Expected Output:

| Cost after iteration 9000 | 0.218607 |

In [25]:
 # Print accuracy
 predictions = predict(parameters, X)
 print ('Accuracy: %d' % float(np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions))

Accuracy: 90%

Expected Output:
Accuracy is really high compared to Logistic Regression. The model has learnt the leaf patterns of the flower! Neural networks are able to learn even highly non-linear decision boundaries, unlike logistic regression.

Now, let's try out several hidden layer sizes.

4.6 - Tuning hidden layer size (optional/ungraded exercise)

Run the following code. It may take 1-2 minutes. You will observe different behaviors of the model for various hidden layer sizes.
In [26]: # This may take about 2 minutes to run

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
 plt.subplot(5, 2, i+1)
 plt.title('Hidden Layer of size %d' % n_h)
 parameters = nn_model(X, Y, n_h, num_iterations = 5000)
 plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
 predictions = predict(parameters, X)
 accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.shape[1]))
 print("Accuracy for {} hidden units: {} %").format(n_h, accuracy)

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %
Accuracy for 20 hidden units: 90.0 %
Accuracy for 50 hidden units: 90.25 %
Planar data classification with one hidden layer v4

https://hub.coursera-notebooks.org/user/ceugcspkoirhiylurudnwn/notebooks/Week%203/Planar%20data%20classification%20with%20one%20hidd...
Interpretation:

- The larger models (with more hidden units) are able to fit the training set better, until eventually the largest models overfit the data.
- The best hidden layer size seems to be around $n_h = 5$. Indeed, a value around here seems to fit the data well without also incurring noticeable overfitting.
- You will also learn later about regularization, which lets you use very large models (such as $n_h = 50$) without much overfitting.

Optional questions:

Note: Remember to submit the assignment but clicking the blue "Submit Assignment" button at the upper-right.

Some optional/ungraded questions that you can explore if you wish:

- What happens when you change the tanh activation for a sigmoid activation or a ReLU activation?
- Play with the learning_rate. What happens?
- What if we change the dataset? (See part 5 below!)

You've learnt to:

- Build a complete neural network with a hidden layer
- Make a good use of a non-linear unit
- Implemented forward propagation and backpropagation, and trained a neural network
- See the impact of varying the hidden layer size, including overfitting.

Nice work!

5) Performance on other datasets

If you want, you can rerun the whole notebook (minus the dataset part) for each of the following datasets.
Datasets

noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_d

datasets = {"noisy_circles": noisy_circles,
 "noisy_moons": noisy_moons,
 "blobs": blobs,
 "gaussian_quantiles": gaussian_quantiles}

START CODE HERE ### (choose your dataset)
dataset = "noisy_moons"
END CODE HERE

X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])

make blobs binary
if dataset == "blobs":
 Y = Y%2

Visualize the data
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

Congrats on finishing this Programming Assignment!

Reference:
