, Congratulations! You passed!

$1 / 1$ points
1.

What does a neuron compute?A neuron computes a linear function $(z=W x+b)$ followed by an activation function
A

Correct

Correct, we generally say that the output of a neuron is $a=g(W x+b)$ where g is the activation function (sigmoid, tanh, ReLU, ...).A neuron computes an activation function followed by a linear function ($z=$ $\mathrm{W} x+\mathrm{b}$)A neuron computes the mean of all features before applying the output to an activation functionA neuron computes a function g that scales the input x linearly $(W x+b)$
2.

Which of these is the "Logistic Loss"?

$$
\begin{aligned}
& \mathcal{L}^{(i)}\left(\hat{y}^{(i)}, y^{(i)}\right)=\left|y^{(i)}-\hat{y}^{(i)}\right| \\
& \mathcal{L}^{(i)}\left(\hat{y}^{(i)}, y^{(i)}\right)=\max \left(0, y^{(i)}-\hat{y}^{(i)}\right) \\
& \mathcal{L}^{(i)}\left(\hat{y}^{(i)}, y^{(i)}\right)=-\left(y^{(i)} \log \left(\hat{y}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right)
\end{aligned}
$$

Correct

Correct, this is the logistic loss you've seen in lecture!

$$
\left.\quad \mathcal{L}^{(i)} \hat{y}^{(i)}, y^{(i)}\right)=\left|y^{(i)}-\hat{y}^{(i)}\right|^{2}
$$

Neural Network Basics
Quiz, 10 questions
$1 / 1$
points

3.

Suppose img is a $(32,32,3)$ array, representing a 32×32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?
$x=$ img.reshape $((32 * 32 * 3,1))$
Correct
$x=$ img.reshape(($1,32 * 32, * 3)$)
$x=$ img.reshape((3,32*32))$x=$ img.reshape((32*32,3))
$1 / 1$
points
4.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)
2 b = np.random.randn(2, 1) # b.shape = (2, 1)
3 c = a + b
```

What will be the shape of "c"?
c.shape $=(2,3)$

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

$$
\text { c.shape }=(3,2)
$$

The computation cannot happen because the sizes don't match. It's going to

Neural Network ${ }^{\text {be }}$ "assict"'

$1 / 1$
points

5.

Consider the two following random arrays "a" and "b":

```
a = np.random.randn(4, 3) # a.shape = (4, 3)
    b = np.random.randn(3, 2) # b.shape = (3, 2)
    c = a*b
```

What will be the shape of "c"?

○
The computation cannot happen because the sizes don't match. It's going to be "Error"!

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape $=(4,2)$.
c.shape $=(4,3)$
c.shape $=(4,2)$
c.shape $=(3,3)$
6.

Suppose you have n_{x} input features per example. Recall that $X=\left[x^{(1)} x^{(2)} \ldots x^{(m)}\right]$. What is the dimension of X ?$\left(m, n_{x}\right)$$(1, m)$

```
O}(\mp@subsup{n}{x}{},m
```

Neural Network Basics$(m, 1)$
points

7.

Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(12288, 150) # a.shape = (12288, 150)
    2 b = np.random.randn(150, 45) # b.shape = (150, 45)
    3 c = np.dot(a,b)
```

What is the shape of c ?

$$
\text { c.shape }=(12288,45)
$$

Correct

Correct, remember that a $\operatorname{np.dot}(a, b)$ has shape (number of rows of a, number of columns of b). The sizes match because :
"number of columns of $\mathrm{a}=150=$ number of rows of b"c.shape $=(12288,150)$The computation cannot happen because the sizes don't match. It's going to be "Error"!c.shape $=(150,150)$
8.

Neural Networla Rasics (3,4)
Quiz, 10 questions
\# b.shape $=(4,1)$
for i in range(3):
\quad for j in range $(4):$
$c[i][j]=a[i][j]+b[j]$

2
\# b.shape $=(4,1)$ for j in range(4): $c[i][j]=a[i][j]+b[j]$

How do you vectorize this?$c=a+b$$\mathrm{c}=\mathrm{a} . \mathrm{T}+\mathrm{b} . \mathrm{T}$$\mathrm{c}=\mathrm{a} . \mathrm{T}+\mathrm{b}$$c=a+b . T$

Correct

$1 / 1$
points
9.

Consider the following code:

```
a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).This will invoke broadcasting, so b is copied three times to become $(3,3)$, and * is an element-wise product so c.shape will be $(3,3)$
-
CorrectThis will invoke broadcasting, so b is copied three times to become $(3,3)$, and * invokes a matrix multiplication operation of two 3×3 matrices so c.shape will be $(3,3)$

This will multiply a 3×3 matrix a with a 3×1 vector, thus resulting in a 3×1 vector. That is, c.shape $=(3,1)$.It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

Quiz, 10 questions 10.
Consider the following computation graph.

What is the output J?$J=(c-1) *(b+a)$$J=(a-1) *(b+c)$

Correct

Yes. $J=u+v-w=a * b+a * c-(b+c)=a *(b+c)-(b+c)=(a-1) *(b+c)$.$J=a * b+b * c+a * c$$J=(b-1) *(c+a)$
\qquad

