Neural Network Basics

Quiz, 10 questions

ongra	atulations! You passed!	Next Item
	1/1	
\checkmark	points	
1. What c	does a neuron compute?	
0	A neuron computes a linear function (z = Wx + b) followed by an function	activation
Corr Corr	ect rect, we generally say that the output of a neuron is $a = g(Wx + b) v$	vhere g is
the	activation function (sigmoid, tanh, ReLU,).	
\bigcirc	A neuron computes an activation function followed by a linear fu Wx + b)	inction (z =
\bigcirc	A neuron computes the mean of all features before applying the activation function	output to an
\bigcirc	A neuron computes a function g that scales the input x linearly (\	Wx + b)
	1/1	
•	points	
2. Which	of these is the "Logistic Loss"?	
\bigcirc	$\mathcal{L}^{(i)}(\hat{u}^{(i)}, u^{(i)}) = u^{(i)} - \hat{u}^{(i)}$	
	$\sim (g^{-}, g^{+}) - g^{+} - g^{-} $	
\bigcirc	$\mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)})=max(0,y^{(i)}-\hat{y}^{(i)})$	

$$igodot \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)}))$$

Correct

Correct, this is the logistic loss you've seen in lecture!

$igcap_{\mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)})} = \mid y^{(i)} - \hat{y}^{(i)} \mid^2$ Neural Network Basics

10/10 points (100%)

Quiz, 10 questions

1/1 points

3.

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

0	x = img.reshape((32*32*3,1))			
Correct				
\bigcirc	x = img.reshape((1,32*32,*3))			
\bigcirc	x = img.reshape((3,32*32))			
\bigcirc	x = img.reshape((32*32,3))			
\checkmark	1 / 1 points			

4.

Consider the two following random arrays "a" and "b":

1 a = np.random.randn(2, 3) # a.shape = (2, 3) 2 b = np.random.randn(2, 1) # b.shape = (2, 1) 3 c = a + b

What will be the shape of "c"?

c.shape = (2, 3)

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

c.shape = (3, 2)

The computation cannot happen because the sizes don't match. It's going to

Neural Network^bBäsics

Quiz, 10 questions c.shape = (2, 1) 10/10 points (100%)

points

1/1

5.

Consider the two following random arrays "a" and "b":

a = np.random.randn(4, 3) # a.shape = (4, 3)1 2 b = np.random.randn(3, 2) # b.shape = (3, 2)3 c = a*b

What will be the shape of "c"?

The computation cannot happen because the sizes don't match. It's going to be "Error"!

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

```
c.shape = (4, 3)
```

c.shape = (4,2)

c.shape = (3, 3)

1/1 points

6.

Suppose you have n_x input features per example. Recall that $X = [x^{(1)}x^{(2)}\dots x^{(m)}]$. What is the dimension of X?

 (m, n_x) (1, m)

 (n_x,m)

Quiz, 10 questions

 (m,1)
✓ 1/1 points
7.

Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

Consider the two following random arrays "a" and "b":

1 a = np.random.randn(12288, 150) # a.shape = (12288, 150) 2 b = np.random.randn(150, 45) # b.shape = (150, 45) 3 c = np.dot(a,b)

What is the shape of c?

Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

c.shape = (12288, 150)

The computation cannot happen because the sizes don't match. It's going to be "Error"!

c.shape = (150,150)

1 / 1 points

8.

Consider the following code snippet:

NT 1 NT (1	
Neural Net	W01	[I⊈ BarSi€S (3,4)	10/10 points (100%)
	2	# b.shape = (4,1)	······ ··· ······ ······ ······ ·······
Quiz, 10 questions	3		
	4	for i in range(3):	
	5	<pre>for j in range(4):</pre>	
	6	c[i][i] = a[i][i] + b[i]	

How do you vectorize this?

 \checkmark

9.

Consider the following code:

1/1 points

1 a = np.random.randn(3, 3) 2 b = np.random.randn(3, 1) 3 c = a*b

What will be c? (If you're not sure, feel free to run this in python to find out).

This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)

Correct

This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)

This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).

It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

10/10 points (100%)

Quiz, 10 questions 10.

Consider the following computation graph.

What is the output J?

